QUANTUM UNIVERSE: GEOMETRY & TOPOLOGY. FINAL EXAM 2015/16

DOCENT: A. V. KISELEV

Problem 1 (10%). Using the polar coordinates $(r \ge 0, \varphi \in [0, 2\pi))$, calculate the scalar curvature R of the Euclidean plane \mathbb{E}^2 with the line element $d\ell^2 = dr^2 + r^2 d\varphi^2$.

Problem 2 (20%). Prove the identity $\Gamma_{ki}^{i} = \frac{1}{2g} \frac{\partial g}{\partial x^{k}}$, where $g = \det(g_{\mu\nu})$ and the symmetric affine connection $\{\Gamma_{bc}^{a}\}$ is associated with the Riemannian metric $g_{\mu\nu}$ by the formula

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{k\ell} \left(\frac{\partial g_{\ell j}}{\partial x^{i}} + \frac{\partial g_{i\ell}}{\partial x^{j}} - \frac{g_{ij}}{\partial x^{\ell}} \right).$$

(dx² + dy²)/y², y > 0 (see figure); the sides of the triangle are segments of the geodesics in H².
Prove [e.g., by an explicit calcula-

• Prove [e.g., by an explicit calculation] that the sum of these three angles is strictly less than π .

Problem 4 (20%). Find the law of material point's inertial motion along the side surface of a circular cylinder of radius r > 0 in \mathbb{E}^3 .

Problem 5 (20%). Prove that the scalar curvature R of a two-dimensional real Riemannian manifold M^2 with a symmetric Riemannian connection associated with the metric $g_{\mu\nu}$ is related to just one component of the Riemann tensor $R_{ij,k\ell}$ on M^2 by the formula $R = 2R_{12,12}/\det(g_{\mu\nu})$.

Date: March 31, 2016.

Do not postpone your success until 23 June. GOOD LUCK!