QUANTUM UNIVERSE: GEOMETRY \& TOPOLOGY. FINAL EXAM 2015/16

DOCENT: A. V. KISELEV

Problem 1 (10%): Using the polar coordinates $(r \geqslant 0, \varphi \in[0,2 \pi)$), calculate the scalar curvature R of the Euclidean plane \mathbb{E}^{2} with the line element $\mathrm{d} \ell^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \varphi^{2}$.

Problem $2(20 \%)$. Prove the identity $\Gamma_{k i}^{i}=\frac{1}{2 g} \frac{\partial g}{\partial x^{k}}$, where $g=\operatorname{det}\left(g_{\mu \nu}\right)$ and the symmetric affine connection $\left\{\Gamma_{b c}^{a}\right\}$ is associated with the Riemannian metric $g_{\mu \nu}$ by the formula

$$
\Gamma_{i j}^{k}=\frac{1}{2} g^{k \ell}\left(\frac{\partial g_{\ell j}}{\partial x^{i}}+\frac{\partial g_{i \ell}}{\partial x^{j}}-\frac{g_{i j}}{\partial x^{\ell}}\right) .
$$

Problem $3(2 \times 15 \%)$. Calculate the angles of the triangle in the hy-
 perbolic plane \mathbb{H}^{2} with the metric $\mathrm{d} s^{2}=$ $\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) / y^{2}, y>0$ (see figure); the sides of the triangle are segments of the geodesics in \mathbb{H}^{2}.

- Prove [e.g., by an explicit calculation] that the sum of these three angles is strictly less than π.

Problem 4 (20\%). Find the law of material point's inertial motion along the side surface of a circular cylinder of radius $r>0$ in \mathbb{E}^{3}.

Problem 5 (20\%). Prove that the scalar curvature R of a two-dimensional real Riemannian manifold M^{2} with a symmetric Riemannian connection associated with the metric $g_{\mu \nu}$ is related to just one component of the Riemann tensor $R_{i j, k \ell}$ on M^{2} by the formula $R=2 R_{12,12} / \operatorname{det}\left(g_{\mu \nu}\right)$.

